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Abstract. Understanding interactions between low clouds and land surface fluxes is 29 

critical to comprehending Earth’s energy balance, yet their relationships remain elusive, 30 

with discrepancies between observations and modeling. Leveraging long-term field 31 

observations over the Southern Great Plains, this investigation revealed that cloud-land 32 

interactions are closely connected to cloud-land coupling regimes. Observational 33 

evidence supports a dual-mode interaction: coupled stratiform clouds predominate in 34 

low sensible heat scenarios, while coupled cumulus clouds dominate in high sensible 35 

heat scenarios. Reanalysis datasets, MERRA-2 and ERA-5, obscure this dichotomy 36 

owing to a shortfall in representing boundary layer clouds, especially in capturing the 37 

initiation of coupled cumulus in high sensible heat scenarios. ERA-5 demonstrates a 38 

relatively closer alignment with observational data, particularly in capturing 39 

relationships between cloud frequency and latent heat, markedly outperforming 40 

MERRA-2. Our study underscores the necessity of distinguishing different cloud 41 

coupling regimes, essential to the understanding of their interactions for advancing 42 

land-atmosphere interactions. 43 

 44 

1 Introduction 45 

Low clouds are key players in Earth's climate, influencing radiative balance and 46 

climate feedback loops. Continental low-level clouds are influenced by the land surface 47 

via processes occurring within the planetary boundary layer (PBL) (Betts, 2009; 48 

Teixeira and Hogan, 2002; Schumacher and Funk, 2023; Golaz et al., 2002; Berg and 49 

Kassianov, 2008; Yang et al., 2019; Guo et al., 2019; Zhang et al., 2017; Fast et al., 50 

2019a). These clouds often emerge within the PBL's entrainment zone under convective 51 

conditions, yet their coupling with the land surface is complex and presents challenges 52 

in accurate determination and understanding (Su et al., 2022). Thus, a comprehensive 53 

examination of how terrestrial processes affect cloud evolution is warranted to 54 

understand the coupling of low-level clouds with the land surface (Bretherton et al., 55 

2007; Moeng et al., 1996; Su et al., 2023; Xian et al., 2023; Zheng et al., 2021; Su and 56 

Li, 2024). 57 

Extensive research has been carried out to investigate cloud-land interactions, 58 
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highlighting the important roles of land surface heterogeneity, evaporative fraction, and 59 

soil moisture (Yue et al. 2017; Tang et al., 2019; Qian et al., 2023). Specifically, multiple 60 

studies have documented how land surface heterogeneity impacts the formation of 61 

shallow convection and development (Rieck et al. 2014; Xiao et al. 2018; Lee et al. 62 

2019). Fast et al. (2019b) and Tao et al. (2019) have elucidated the strength of land-63 

atmosphere interactions and their important roles in modulating convective cloud 64 

formation and evolution. As the majority of these studies have focused on local 65 

convection or cumulus, the wide range of cloud types and their interactions with the 66 

land surface present a complex and multifaceted challenge (Sakaguchi et al., 2022; Poll 67 

et al., 2022; Tao et al., 2021). It is essential to delve into these characteristics and dissect 68 

the cloud-land relationships across different regimes to achieve a more detailed 69 

understanding of these interactions. 70 

Cloud variables in reanalysis data have also been extensively utilized in numerous 71 

studies (Su et al., 2013; Cesana et al., 2015), and have undergone detailed evaluations 72 

for the vertical structure and spatial variations (Dolinar et al., 2016; Free et al., 2016; 73 

Liu and Key, 2016). Several studies have reported the underestimation of low-level 74 

cloud fraction in popular reanalysis datasets, such as the European Centre for Medium-75 

Range Weather Forecasts' fifth-generation global reanalysis (ERA-5), across different 76 

regions (Miao et al., 2019; Peng et al., 2019; Danso et al., 2019). Besides, reanalysis 77 

datasets face significant challenges in accurately representing the complex interactions 78 

between low clouds and the land surface (Tao et al., 2021; Wang et al., 2023; Betts et 79 

al., 2006). A gap exists in specifically assessing how these datasets capture cloud-land-80 

surface coupling, particularly under stratiform regimes. Consequently, further 81 

investigation is warranted into the effectiveness of reanalysis products in representing 82 

the relationships between clouds and land surface fluxes across different coupling 83 

regimes. 84 

Our study addresses two primary objectives: firstly, to develop a diagnostic 85 

approach for untangling cloud-land relationships across distinct cloud coupling regimes; 86 

and secondly, to evaluate the performance of prevailing reanalysis datasets in 87 

representing these relationships across different cloud regimes. Utilizing field 88 
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observations over the Atmospheric Radiation Measurement (ARM) Southern Great 89 

Plains (SGP) site, we investigate the interactions between low clouds and land surface 90 

fluxes and highlight the discrepancies with reanalysis datasets for different cloud 91 

regimes, including coupled stratiform, coupled cumulus, and decoupled clouds.  92 

 93 

2 Data and Method 94 

2.1 Observational and reanalysis dataset 95 

The ARM program, funded by the U.S. Department of Energy, has been operational 96 

at the SGP site in Oklahoma (36.607°N, 97.488°W) for decades. We use long-term data 97 

(1998-2020) over the SGP, including the Active Remote Sensing of Clouds (ARSCL, 98 

Clothiaux et al. 2000, 2001; Kollias et al. 2020), thermodynamic profiles from 99 

radiosonde, in-situ surface flux measurements, and meteorological data recorded at the 100 

surface (Cook, 2018; Xie et al., 2010). We further use reanalysis datasets from the ERA-101 

5 (Hersbach et al., 2020) and Modern-Era Retrospective analysis for Research and 102 

Applications Version 2 (MERRA-2, Gelaro et al., 2017). As the state-of-art reanalysis 103 

data, the ERA-5 is produced by the Integrated Forecasting System (IFS) and a data 104 

assimilation system at a fine spatial resolution of 0.25° x 0.25°. Meanwhile, the 105 

MERRA-2 offers atmospheric and land information at a resolution of 0.5° x 0.625° 106 

(Randles et al., 2017). An important difference between the ERA-5 and MERRA-2 is 107 

the cloud parameterization: ERA-5 uses a prognostic cloud scheme (Tiedtke 1993) that 108 

accounts for the impacts from previous time steps whereas MERRA-2 uses a diagnostic 109 

cloud scheme. The procurement, processing, and quality assurance steps for 110 

observational and reanalysis datasets are further detailed in Supporting Information 111 

Section 1.  112 

 113 

2.2 Identification of cloud coupling regimes 114 

Su et al. (2022) developed a micropulse lidar-based approach to discern the cloud-115 

land coupling by accounting for the vertical coherence and temporal continuity of PBL 116 

height (PBLH). Clouds are defined as coupled when the turbulence originating from 117 

the surface is able to reach the cloud base, thereby influencing its evolution, resulting 118 
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in a turbulence-facilitated linkage among surface fluxes, PBL, and the cloud. We 119 

differentiate between coupled and decoupled low-level clouds using PBLH, cloud base, 120 

and lifting condensation level (LCL). The method for calculating PBLH is detailed in 121 

Su et al. (2020) which has been used to develop a PBLH climatological dataset at the 122 

central facilities of SGP. LCL values are calculated using the method outlined in Romps 123 

(2017). Coupled clouds are identified by the alignment of cloud base height (CBH) with 124 

the lidar-detected PBL top and LCL within a defined range, while decoupled clouds, 125 

which form independently of surface-driven updrafts, are indicated by a lack of this 126 

alignment.  127 

Following the determination of cloud-land coupling, we exclude precipitation 128 

events exceeding 0.1 mm h-1 to prevent distortion in lidar signals and surface flux 129 

measurements. The study focuses on data from 09:00 to 15:00 Local Time (LT) to avoid 130 

the late afternoon period when the PBL typically begins to decay. We exclude the 131 

coexistence of coupled and decoupled low clouds during this period and further 132 

implement a classification into cumulus and stratiform categories among coupled cloud 133 

days. For coupled cumulus, two conditions are implemented in line with practices from 134 

previous studies (Zhang and Klein 2010, 2013; Lareau et al., 2018): (1) cloud 135 

formations must emerge after sunrise without low clouds at 08:00 LT to make sure that 136 

clouds are driven by local convection; (2) there is absence of overcast clouds. Coupled 137 

stratiform clouds are characterized by prolonged overcast clouds, which last more than 138 

3 hours. Overcast low-level clouds have a cloud fraction of more than 90% based on 139 

ASRSL data.  140 

Figure S1 showcases these cloud regimes, with coupled cumulus manifesting as 141 

discrete cellular formations in satellite imagery, and coupled stratiform clouds 142 

displaying broad, extensive coverage starting from the previous night. Meanwhile, 143 

decoupled clouds are distinguished by their separation from surface-driven PBL 144 

activity. Applying this methodological framework has led to the identification of 631 145 

days marked by coupled cumulus and 470 days with coupled stratiform clouds across 146 

all seasons. In addition, we have distinguished 578 days with decoupled clouds across 147 

two decades, excluding instances with mixed coupled and decoupled low clouds. 148 
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Compared to the conventional approaches focused on identifying the specific types of 149 

clouds (e.g., cumulus or stratocumulus), our approach delineates different cloud-land 150 

coupling regimes, encompassing both coupled/decoupled states and cumulus/stratiform 151 

regimes. This enables a comprehensive analysis of cloud-land interactions, examining 152 

these relationships through the perspective of cloud-land coupling. 153 

 154 

3 Results 155 

3.1 Overall relationship between cloud occurrence frequency and surface fluxes 156 

Our investigation begins by exploring the connection between the frequency of low 157 

cloud occurrences and surface sensible and latent heat fluxes. The evaluation criterion 158 

for low cloud occurrence is based on hourly cloud fraction where the maximum value 159 

between the surface and 700 hPa exceeds a 1% threshold. This study analyzes hourly 160 

mean data, with hourly low cloud occurrence categorized as 0 or 1. The cloud frequency 161 

is further calculated by dividing the sum by the total number of hours analyzed. This 162 

analysis incorporates data from both observational sources and the reanalysis datasets 163 

of ERA-5 and MERRA-2, as detailed in Figure 1. For the overall relationship, the same 164 

precipitation filter of 0.1 mm h-1 has been applied to the observation, ERA-5, and 165 

MERRA-2. Observational findings depicted in Figures 1a-b showcase a dual-mode 166 

interaction: cloud frequencies initially diminish at lower sensible heat levels and 167 

subsequently augment with an increase in sensible heat. 168 

When extending the analysis to reanalysis datasets, different responses of cloud to 169 

surface fluxes emerge (Figures 1c-f). The correlation between surface fluxes observed 170 

and those within reanalysis datasets is presented in Figure S2. While ERA-5 partially 171 

captures the essence of the observed cloud-land relationships, particularly for latent 172 

heat, it still exhibits discrepancies in cloud frequency concerning sensible heat. ERA-5 173 

data reflects a trend of decreasing cloud frequency with rising sensible heat, compared 174 

to the dual-mode interaction in the observations. 175 

MERRA-2’s response, however, is notably different; it presents a systematic 176 

underestimation of cloud occurrences across all surface flux ranges. Figure S3 177 

accentuates this point by showing that both reanalysis datasets, especially MERRA-2, 178 
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consistently underrepresent the average low cloud fractions across the spectrum of 179 

sensible and latent heat fluxes compared to observational data. 180 

 181 

3.2 Characteristics for different cloud regimes 182 

To elucidate the complex relationship between cloud presence and terrestrial 183 

influences, Figure 2 presents the changes of cloud occurrence frequency relative to 184 

surface sensible heat for different cloud regimes. By excluding days where low cloud 185 

regimes intermingle, we isolate the distinct behavioral signatures of each regime among 186 

days with coupled/decoupled scenarios and clear-sky. In the juxtaposition of reanalysis 187 

datasets against field observations, we examine the variation in cloud frequency under 188 

different levels of sensible heat in Figure 2. For comparison, these regimes of days are 189 

classified solely based on observational data and the relationships are calculated from 190 

observation and reanalysis data for the same samples. 191 

Coupled stratiform clouds are characterized by their extensive coverage and cloud 192 

shading effects, predominating under low sensible heat conditions. As a result, there is 193 

a notable decrease in sensible heat concurrent with the increase in cloud frequency, as 194 

illustrated in Figures 2a-c. These clouds are associated with a well-mixed and unstable 195 

sub-cloud layer, indicative of a dynamic exchange of heat and moisture with the 196 

underlying surface, as depicted in Figure S4. The presence of widespread overcasting, 197 

often concurrent with lower sensible heat, reinforces the persistence of stratiform clouds 198 

by mitigating the drying effects of entrainment.  199 

In the realm of coupled cumulus, an increase in sensible heat is linked to enhanced 200 

cloud formation, as surface heating intensifies convective activity within the PBL. 201 

During days when these clouds are present, ERA-5 data tend to underestimate the 202 

frequency of locally generated convection under high sensible heat scenarios, as 203 

reflected in Figure 2d-e. MERRA-2 demonstrates a significant deviation from observed 204 

patterns, consistently missing a large fraction of low clouds (Figure 2f). Decoupled 205 

clouds exhibit a more complex relationship with surface sensible heat (Figure 2g-i). 206 

Although they do not interact directly with PBL thermodynamics, they exert a cloud 207 

shading effect, leading to a suppression of surface sensible heat.  208 
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Figure 3 shows the relationships between cloud and latent heat. In analogy with the 209 

trends observed for sensible heat, coupled stratiform clouds demonstrate a diminishing 210 

frequency with increasing latent heat. On the other hand, coupled cumulus clouds tend 211 

to occur more frequently as latent heat increases, indicative of a conducive environment 212 

for cloud coupling, possibly through mechanisms such as lowering the LCL alongside 213 

PBL growth. This highlights that moderate to strong latent heat particularly promotes 214 

cloud formation coupling. To address the gap between grid and point data, we employed 215 

surface fluxes gridded to a spatial resolution of 0.25° x 0.25° for analyzing the cloud-216 

land relationships, revealing that the patterns of these relationships exhibit similarity 217 

across both the gridded and point flux measurements (Figures S5 and Figure S6). In 218 

addition, stratiform cloud frequency generally increases with the evaporative fraction, 219 

emphasizing latent heat's role in their formation, while both ERA-5 and MERRA-2 220 

inaccurately depict a decline in cloud frequency across evaporative fraction ranges and 221 

also fail to accurately represent cumulus formation at lower evaporative fraction values, 222 

which are primarily driven by sensible heat (Figure S7). 223 

The diurnal variation in cloud fraction across the different regimes is further 224 

illustrated in Figure 4, which underscores the notable biases present in reanalysis 225 

datasets. MERRA-2 notably underestimates low-level cloud fractions. Despite a similar 226 

pattern, ERA-5 struggles to represent local cumulus convection and decoupled cloud 227 

scenarios with insufficient cloud fraction. Such underrepresentation of boundary layer 228 

clouds culminates in a generalized underestimation of low clouds within both MERRA-229 

2 and ERA-5 (Figure S8). The underestimation in the low cloud fraction can also lead 230 

to a weak surface cooling effect in reanalysis data. 231 

Our results are related to prior studies that highlight diurnal biases in convection 232 

over the central United States, particularly the challenges in accurately capturing local 233 

convection and the insufficient triggering of cumulus, as detailed in studies by Tao et 234 

al. (2021, 2023). Their studies also noted the shortfall in triggering shallow cumulus 235 

clouds, contributing to the biases in convection patterns.  236 

 237 
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3.3 Meteorological triggers for cloud formation across regimes 238 

Cloud development across various coupling regimes is linked to essential 239 

meteorological factors, particularly atmospheric instability and humidity, as indicated 240 

by PBLH and surface relative humidity (RHsfc). Figure 5a presents the coupling-241 

decoupling difference, calculated as the difference between the frequencies of coupled 242 

and decoupled clouds, and examines its correlations with changes in PBLH and RHsfc. 243 

Their relationships are also influenced by sensible heat marked in the grey-scale dots 244 

showing the connections between PBLH and RHsfc under an array of sensible heat 245 

conditions. Figure 5b indicates the corresponding variations in the frequency of low 246 

clouds under different values of PBLH and RHsfc.  247 

Distinct domains emerge within the coupled cloud zone: more coupled stratiform 248 

clouds are prevalent in environments under higher RHsfc and lower PBLH, typically 249 

associated with lower sensible heat conditions. Conversely, coupled cumulus clouds 250 

flourish under opposite conditions (i.e., lower RHsfc and higher PBLH) suggestive of 251 

higher sensible heat and strong convection. Decoupled clouds, inferred from their 252 

negative coupling-decoupling differences, tend to occur towards lower PBLH across a 253 

broader RH spectrum, indicating their formation is less contingent on surface-induced 254 

convective processes. From low to high sensible heat, cloud regimes transit from 255 

coupled stratiform to coupled cumulus clouds. 256 

Figures 5c-d present comparative analyses of the frequency of clouds vis-à-vis 257 

PBLH and RHsfc, extracted from reanalysis datasets. Notably, both the occurrence and 258 

fraction of clouds are misrepresented in MERRA-2. While the ERA-5 clouds generally 259 

bear closer resemblance to the observed clouds, but still differ considerably in the 260 

occurrences of both coupled stratiform clouds and coupled cumulus. The 261 

underrepresentation of cumulus by the reanalysis stems from inadequate PBL 262 

development under high sensible heat scenarios (Figure 5c-d). Meanwhile, the RH is 263 

notably lower for the low sensible heat scenarios, which are linked with stratiform 264 

clouds. The systematic underestimation in RH can contribute to the overall 265 

underestimation of both cumulus and stratiform clouds, as illustrated in Figure S9, 266 

further hindering the triggering of coupled clouds. These findings underscore the 267 
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critical need for enhancing the accuracy of surface flux and humidity representation in 268 

reanalysis datasets, alongside refining the parametrization of their effects on convection.  269 

 270 

4. Discussion and Conclusions 271 

In this study, we dissect the complex relationships between low clouds and surface 272 

fluxes over the Southern Great Plains. Building on previous studies that were primarily 273 

focused on cloud-land interactions within shallow cumulus, we demonstrate that both 274 

the cumulus and stratiform regimes represent distinct yet interconnected modes of 275 

cloud-land coupling. Consequently, we explore a bifurcated interaction pattern within 276 

the framework of cloud-land coupling, identifying that stratiform coupling prevails in 277 

low sensible heat conditions, while cumulus coupling becomes the leading regime in 278 

high sensible heat scenarios. Together, these findings portray the full paradigm of the 279 

coupling between cloud and land surface, occurring under various conditions. It follows 280 

from analyses of observations that meteorological conditions such as PBLH and RH 281 

are instrumental in cloud formation across different regimes, with transitions from 282 

stratiform to cumulus regimes leading to the overall pattern of cloud-land relationships.  283 

Reanalysis datasets do not sufficiently capture the observed bifurcated interaction 284 

pattern and present a damped decline pattern in the cloud-land relationship. MERRA-2 285 

consistently underestimates cloud frequency across various cloud regimes, with a 286 

particular shortfall in capturing the occurrence of coupled cumulus. ERA-5 generally 287 

exhibits a superior correlation with observational data, notably in the context of latent 288 

heat interactions. However, ERA-5 still shows discrepancies, especially with the 289 

frequency and initiation of coupled cumulus. Meanwhile, both reanalysis datasets fail 290 

to represent decoupled clouds accurately, as these clouds' formation mechanisms appear 291 

disconnected from local PBL processes. 292 

This assessment of different cloud regimes underscores the significance of cloud 293 

coupling in analyzing cloud-land interactions. The initiation of convection in coupled 294 

cumulus is closely tied to surface processes on a sub-grid scale (Tian et al, 2022). As 295 

these cloud regimes respond to climate change, misrepresentation of these cloud 296 

dynamics within climate models could lead to uncertainties in predictions of climate 297 
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sensitivity, as posited by Schneider et al. (2019). The emergence of global storm-298 

resolving models with kilometer-scale resolutions, as detailed in Satoh et al. (2005), 299 

Caldwell et al. (2021) and Hohenegger et al. (2023), may offer great potential for 300 

addressing these complex modeling challenges in cloud-land interactions. 301 
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Figures 553 

 554 

Figure 1.  Comparison of observations and reanalysis for the relationships between low 555 
clouds and surface fluxes. Histograms represent the average frequency of low cloud 556 
occurrences binned by surface sensible heat (a, c, e) and latent heat flux (b, d, f) during 557 
09:00-15:00 LT. Red lines indicate the number of hours with low cloud occurrence 558 
within each flux bin. Cases with precipitation exceeding 0.1mm h-1 are excluded from 559 
analyses. The first (a, b), second (c, d), and third rows (e, f) correspond to observations, 560 
ERA-5, and MERRA-2 respectively.  561 



 

 19 

 562 

Figure 2. Cloud occurrence frequency and surface sensible heat relationships 563 
segregated by conditions of cloud regimes during 09:00-15:00 LT. The histograms 564 
display the average frequency of different cloud types binned by surface sensible heat 565 
flux for observational (OBS), ERA reanalysis, and MERRA reanalysis datasets. Panels 566 
(a) to (c) showcase coupled stratiform clouds, panels (d) to (f) depict coupled cumulus 567 
clouds, and panels (g) to (i) present decoupled clouds. Grey lines indicate the number 568 
of hours with low cloud occurrence within each flux bin. 569 

 570 

 571 
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 572 

Figure 3. Similar to Figure 2, but depicting the relationships between low cloud 573 
occurrence frequency and surface latent heat fluxes. 574 

 575 
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 576 

Figure 4. Diurnal variation of cloud fraction with atmospheric pressure across different 577 
cloud regimes in observations and reanalysis data. This figure presents contour plots 578 
that display the variation of cloud fraction during the daytime at various atmospheric 579 
pressures for three distinct scenarios: coupled stratiform clouds, coupled cumulus, and 580 
decoupled clouds. Each row represents one of the cloud scenarios, with observational 581 
data (OBS) in the first column, ERA reanalysis data in the second column, and MERRA 582 
reanalysis data in the third column. 583 

 584 
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585 
Figure 5. (a) The differences between the frequencies of coupled and decoupled clouds 586 
(former minus latter) under the different ranges of Planetary Boundary Layer Height 587 
(PBLH) and surface relative humidity (RHsfc). (b-d) The values of the low cloud 588 
occurrence frequency (COF) correspond to PBLH and RHsfc from (b) observations, (c) 589 
ERA-5, and (d) MERRA-2. In (a), the means and standard deviations of stratiform 590 
clouds and cumulus are marked. The grey-scale dots indicate the averages of PBLH and 591 
RHsfc for different sensible heat values. The dash white lines in (a) indicate the range of 592 
standard deviations of different PBLH for different sensible heat bins.  The black line 593 
denoting the position of 50% COF.  594 

 595 
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S. 1 Descriptions of datasets: 623 

(1) Thermodynamic profiles from radiosonde 624 

We will use radiosonde measurements to characterize the thermodynamic settings 625 

of the PBL. Radiosondes are routinely launched multiple times at the ARM sites. 626 

Holdridge et al. (2011) provided technical details about the ARM radiosonde. Using the 627 

well-established method developed by Liu and Liang (2010), we retrieved PBLHs over 628 

the SGP site based on the vertical profiles of potential temperature from radiosonde 629 

measurements. 630 

(2) Active Remote Sensing of Clouds (ARSCL)  631 

We will use the well-established ARM cloud product, named ARSCL, generated for 632 

each ARM site (Clothiaux et al., 2000; Flynn et al., 2017). ARSCL provides the vertical 633 

boundaries of clouds by combining data from the MPL, ceilometer, and cloud radar, 634 

conveying useful information pertaining to the vertical structure and temporal evolution 635 

of clouds (Kollias et al., 2007).  For the lowest cloud base, we will use the best 636 

estimation from laser-based techniques (i.e., MPL and ceilometer). Based on ARSCL, 637 

Xie et al. (2010) offers a comprehensive dataset of cloud fraction profiles. 638 

(3) Surface fluxes 639 

Surface fluxes are critical for PBL development and closely interact with low clouds 640 

as the driving force. A value-added product at ARM called the bulk aerodynamic latent 641 

and sensible heat fluxes from energy balance Bowen ratio (BAEBBR) was generated 642 

to replace energy balance Bowen ratio flux measurements with a bulk aerodynamic 643 

estimation when the Bowen Ratio (Wesely et al., 1995). We use the Best Estimate 644 
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Sensible/Latent Heat Fluxes in the BAEBBR product. 645 

(4) ARMBE2DGRID 646 

The ARMBE2DGRID VAP provides a dataset by integrating key surface 647 

measurements from the Southern Great Plains sites, consolidating them into a uniform 648 

2D grid (https://www.arm.gov/capabilities/science-data-products/vaps/armbe2dgrid). 649 

The dataset delivers hourly data with a spatial resolution of 0.25° x 0.25°. It 650 

encompasses a wide range of products including Surface Meteorological 651 

Instrumentation, data from Oklahoma Mesonet and Kansas State University Mesonet, 652 

Quality Controlled Radiation Data, observations from Geostationary Operational 653 

Environmental Satellites, Microwave Radiometer, Best-Estimate Fluxes from 654 

BAEBBR, ECOR outputs, and Soil Water and Temperature System data. Rigorous 655 

Quality Controls are employed to ensure the reliability of the data. 656 

(5) MODIS aboard the NASA Aqua and Terra 657 

NASA's Aqua and Terra satellites, carrying the Moderate Resolution Imaging 658 

Spectroradiometer (MODIS), provides high-quality data on global cloud coverage. The 659 

corrected reflectance product from MODIS offers a true-color view of the Earth's 660 

surface and atmosphere, allowing for accurate confirmation of cloud presence and 661 

extent (Schaaf et al., 2002). By analyzing the true-color imagery, we can inspect cloud 662 

regimes, checking stratiform and cumulus for coupled clouds. NASA MODIS 663 

imageries are achieved in https://worldview.earthdata.nasa.gov/. 664 

(6) ERA-5 Reanalysis Data 665 

As one of the most advanced and widely used reanalysis data, ERA-5, produced 666 

https://www.arm.gov/capabilities/science-data-products/vaps/armbe2dgrid
https://worldview.earthdata.nasa.gov/


 

 26 

by the European Centre for Medium-Range Weather Forecasts (ECMWF), provides a 667 

high-resolution, hourly updated global atmospheric reconstruction (Hersbach et al. 668 

2020). Utilizing advanced assimilation of vast amounts of observational data, ERA-5 669 

offers comprehensive climate variables, including temperature, humidity, wind, and 670 

cloud properties. We used this dataset to compare cloud-land relationships between 671 

observation and reanalysis datasets. With its fine spatial resolution and temporal 672 

coverage, ERA-5 allows for analysis of cloud formation, relating to PBL 673 

thermodynamics and surface processes. 674 

(7) MERRA-2 Reanalysis Data 675 

The Modern-Era Retrospective analysis for Research and Applications, Version 676 

2 (MERRA-2), developed by NASA, is an improved reanalysis dataset focusing on the 677 

representation of the hydrological cycle, aerosols, and atmospheric composition 678 

(Gelaro et al., 2017). MERRA-2 integrates satellite and ground-based observational 679 

data to provide a coherent record of the global atmosphere. The low cloud fraction data 680 

are provided at a temporal resolution of one hour, while the vertical cloud fraction are 681 

available at three-hour intervals. In this study, MERRA-2's extensive coverage and 682 

detailed depiction of atmospheric variables are used to examine the cloud occurrences 683 

and their relationship with surface fluxes. 684 
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Figures 685 

 686 

Figure S1. Daily vertical profiles of backscatters for coupled cumulus (a, Case I) and 687 

coupled stratiform cloud (b, Case II). Backscatter is normalized to a range of 0-1, in 688 

arbitrary units. Red dots and blue dots indicate the CTH and CBH of coupled cloud. 689 

Black lines and green stars mark the PBLH retrieved from MPL and radiosonde. (c and 690 

d) 2-D view of the corrected reflectance (true color) derived from MODIS (Aqua) for 691 

Case I (c) and Case II (d). The red circle marks the position of SGP site. (e-f) Daily 692 
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vertical profiles of backscatters and the satellite image for decoupled cloud (Case III). 693 

 694 

Figure S2. Density scatterplots of the comparison between observed surface fluxes and 695 

reanalysis surface fluxes during 09:00-15:00 Local Time (OBS SH: observed sensible 696 

heat; OB LH: observed latent heat; ERA SH: sensible heat from ERA-5; ERA LH: 697 

latent heat from ERA-5; MERRA SH: sensible heat from MERRA-2; MERRA LH: 698 

latent heat from MERRA-2). The correlation coefficients (R) are given in each panel. 699 

The solid black lines represent the linear regression, and the dashed grey lines denote 700 

1:1 line.  701 

 702 

 703 

 704 
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 705 

 706 

Figure S3. Comparison of average low cloud fraction across varying ranges of sensible 707 

and latent heat fluxes. The low cloud fraction is defined as the maximum cloud fraction 708 

occurring between the surface and 700 hPa. The data are categorized by source, with 709 
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observations (OBS), ERA-5, and MERRA-2 depicted in pink, blue, and green bars, 710 

respectively.  711 

 712 

Figure S4. The average profiles of RH (red line) and virtual potential temperature (𝜃!, 713 

blue line) for (a) coupled stratiform cloud, (b) coupled cumulus, and (c) decoupled 714 

cloud. The vertical scale is normalized by CBH (black dash line). The red and blue 715 

shaded areas indicate the standard deviations for RH and virtual potential temperature, 716 

respectively. 717 

 718 
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 719 

 720 

 721 

 722 

Figure S5. Cloud occurrence frequency and surface sensible heat relationships 723 

segregated by conditions of cloud regimes during 09:00-15:00 LT. The histograms 724 

display the average frequency of different cloud types binned by surface sensible heat 725 

flux for point observation (OBS) from the BAEBBR and for the 2D observation (OBS 726 

2D) from the ARMBE2DGRID. Grey lines indicate the number of hours with low cloud 727 

occurrence within each flux bin. 728 



 

 32 

 729 

 730 

Figure S6. Similar to Figure S5, but depicting the relationships between low cloud 731 

occurrence frequency and surface latent heat fluxes. 732 

 733 

 734 

 735 
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 736 

Figure S7. Similar to Figure S5, but depicting the relationships between low cloud 737 

occurrence frequency and evaporative fraction. Evaporative fraction is calculated as  738 

"#$%&$	(%#$
"#$%&$	(%#$)*%&+,-.%	(%#$

.  739 

 740 

 741 

 742 

 743 

 744 

 745 
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 746 

Figure S8. Diurnal Variation of Cloud Fraction in Observations and Reanalysis Data. 747 

Contour plots represent the diurnal cycle of cloud fraction as a function of pressure (in 748 

hPa) for observational (OBS, a) and two reanalysis datasets (ERA and MERRA, b-c).  749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 
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 757 

Figure S9. Diurnal variations in PBLH and RH across different sensible heat (SH) 758 

scenarios. The graphs illustrate the progression of PBLH and RH throughout the day, 759 

segmented into three sensible heat categories: low (0-200) (a, d), median (200-400) (b, 760 

e), and high (>400 W m-2) (c, f). Solid lines represent the mean values from 761 

observations (Obs), ERA-5 reanalysis (ERA), and MERRA-2 reanalysis (MERRA). 762 

Shaded areas indicate one standard deviation from the mean, providing a visual 763 

representation of variability within each dataset.  764 

 765 

 766 
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